Documentation

Lean.Syntax

Equations
inductive Lean.IsNode :
Lean.SyntaxProp
noncomputable def Lean.SyntaxNode :
Type
Equations
def Lean.unreachIsNodeAtom {β : Sort u_1} {info : Lean.SourceInfo} {val : String} (h : Lean.IsNode (Lean.Syntax.atom info val)) :
β
Equations
def Lean.unreachIsNodeIdent {β : Sort u_1} {info : Lean.SourceInfo} {rawVal : Substring} {val : Lean.Name} {preresolved : List (Lean.Name × List String)} (h : Lean.IsNode (Lean.Syntax.ident info rawVal val preresolved)) :
β
Equations
@[inline]
Equations
@[inline]
def Lean.SyntaxNode.withArgs {β : Sort u_1} (n : Lean.SyntaxNode) (fn : Array Lean.Syntaxβ) :
β
Equations
@[inline]
Equations
Equations
Equations
@[inline]
def Lean.Syntax.ifNode {β : Sort u_1} (stx : Lean.Syntax) (hyes : Lean.SyntaxNodeβ) (hno : Unitβ) :
β
Equations
@[inline]
def Lean.Syntax.ifNodeKind {β : Sort u_1} (stx : Lean.Syntax) (kind : Lean.SyntaxNodeKind) (hyes : Lean.SyntaxNodeβ) (hno : Unitβ) :
β
Equations
Equations
@[inline]
Equations
@[inline]
Equations
@[specialize]
partial def Lean.Syntax.replaceM {m : TypeType} [inst : Monad m] (fn : Lean.Syntaxm (Option Lean.Syntax)) :
@[specialize]
partial def Lean.Syntax.rewriteBottomUpM {m : TypeType} [inst : Monad m] (fn : Lean.Syntaxm Lean.Syntax) :
Equations
Equations
structure Lean.Syntax.TopDown :
Type
Equations
Equations
@[specialize]
partial def Lean.Syntax.instForInTopDownSyntax.loop {m : Type u_1Type u_2} :
{β : Type u_1} → [inst : Monad m] → (Lean.Syntaxβm (ForInStep β)) → BoolLean.Syntaxβ[inst : Inhabited β] → m (ForInStep β)
Equations
Equations
structure Lean.Syntax.Traverser :
Type
Equations
Equations
Equations
Equations
def Lean.Syntax.MonadTraverser.getCur {m : TypeType} [inst : Monad m] [t : Lean.Syntax.MonadTraverser m] :
Equations
Equations
Equations
Equations
def Lean.Syntax.MonadTraverser.getIdx {m : TypeType} [inst : Monad m] [t : Lean.Syntax.MonadTraverser m] :
m Nat
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations