Documentation

Lean.Data.SSet

noncomputable def Lean.SSet (α : Type u) [inst : BEq α] [inst : Hashable α] :
Type u
Equations
instance Lean.SSet.instInhabitedSSet {α : Type u} [inst : BEq α] [inst : Hashable α] :
Equations
@[inline]
abbrev Lean.SSet.empty {α : Type u} [inst : BEq α] [inst : Hashable α] :
Equations
  • Lean.SSet.empty = Lean.SMap.empty
@[inline]
abbrev Lean.SSet.insert {α : Type u} [inst : BEq α] [inst : Hashable α] (s : Lean.SSet α) (a : α) :
Equations
@[inline]
abbrev Lean.SSet.contains {α : Type u} [inst : BEq α] [inst : Hashable α] (s : Lean.SSet α) (a : α) :
Equations
@[inline]
abbrev Lean.SSet.forM {α : Type u} [inst : BEq α] [inst : Hashable α] {m : Type u_1Type u_1} [inst : Monad m] (s : Lean.SSet α) (f : αm PUnit) :
Equations
@[inline]
abbrev Lean.SSet.switch {α : Type u} [inst : BEq α] [inst : Hashable α] (s : Lean.SSet α) :
Equations
@[inline]
abbrev Lean.SSet.fold {α : Type u} [inst : BEq α] [inst : Hashable α] {σ : Type u_1} (f : σασ) (init : σ) (s : Lean.SSet α) :
σ
Equations
@[inline]
abbrev Lean.SSet.size {α : Type u} [inst : BEq α] [inst : Hashable α] (s : Lean.SSet α) :
Equations
def Lean.SSet.toList {α : Type u} [inst : BEq α] [inst : Hashable α] (m : Lean.SSet α) :
List α
Equations
def List.toSSet {α : Type u_1} [inst : BEq α] [inst : Hashable α] (es : List α) :
Equations
instance instReprSSet {α : Type u_1} :
{x : BEq α} → {x_1 : Hashable α} → [inst : Repr α] → Repr (Lean.SSet α)
Equations