@[inline]
Equations
- Lean.SSet.insert s a = Lean.SMap.insert s a ()
@[inline]
abbrev
Lean.SSet.contains
{α : Type u}
[inst : BEq α]
[inst : Hashable α]
(s : Lean.SSet α)
(a : α)
:
Equations
- Lean.SSet.contains s a = Lean.SMap.contains s a
@[inline]
abbrev
Lean.SSet.forM
{α : Type u}
[inst : BEq α]
[inst : Hashable α]
{m : Type u_1 → Type u_1}
[inst : Monad m]
(s : Lean.SSet α)
(f : α → m PUnit)
:
m PUnit
Equations
- Lean.SSet.forM s f = Lean.SMap.forM s fun a x => f a
@[inline]
Equations
@[inline]
abbrev
Lean.SSet.fold
{α : Type u}
[inst : BEq α]
[inst : Hashable α]
{σ : Type u_1}
(f : σ → α → σ)
(init : σ)
(s : Lean.SSet α)
:
σ
Equations
- Lean.SSet.fold f init s = Lean.SMap.fold (fun d a x => f d a) init s
@[inline]
Equations
Equations
- Lean.SSet.toList m = Lean.SSet.fold (fun es a => a :: es) [] m
Equations
- List.toSSet es = List.foldl (fun s a => Lean.SSet.insert s a) { stage₁ := true, map₁ := ∅, map₂ := { root := Std.PersistentHashMap.Node.entries Std.PersistentHashMap.mkEmptyEntriesArray, size := 0 } } es
Equations
- instReprSSet = { reprPrec := fun v prec => Repr.addAppParen (reprArg (Lean.SSet.toList v) ++ Std.Format.text ".toSSet") prec }